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Abstract—On-line cutting tool condition monitoring 

becomes one of the most critical requirements in machining 

processes for improving the efficiency and the autonomy of 

CNC machine tools. The processes can be significantly 

improved by using an intelligent integration of sensor 

information to detect and identify accurately the tool 

condition under various cutting parameters. This paper 

presents a structured and comprehensive approach for 

on-line tool condition identification in metal cutting 

processes using ANN based multi-sensor fusion strategy. 

Various sensing techniques are combined with different 

preprocessing techniques to select suitable monitoring 

indices and then numerous models for on-line tool condition 

identification. The proposed approach is built progressively 

by examining monitoring indices from various aspects and 

making modeling decision step by step. The results indicate a 

significant improvement and a good reliability in identifying 

various tool conditions regardless of the variation in cutting 

parameters. 

 
Index Terms—metal cutting processes, tool condition 

identification, tool condition monitoring, ANN, multi-sensor 

fusion, monitoring indices.  

 

I. INTRODUCTION 

On-line cutting tool condition identification (CTCI) is 

one of the most important components in modern and 

flexible manufacturing systems. The majority of the 

processes, when operating near their operational limits, are 

affected by failures that seriously compromise their 

reliability and increase the frequency of human 

interventions. Tool failure can lead to undesirable and 

excessive machine vibrations and a possible devastating 

tool breakage causing damage to the machine tool as well 

as the workpiece. The cost of such damages can be 

drastically reduced by using techniques allowing 

avoidance, prediction or detection of such a failure. As a 

result, many approaches have been proposed in the past 

decades [1]-[2]. However, much more research is required 

to develop a reliable and cost-effective CTCI system for 

applications on the shop floor, especially when dealing 

with variable conditions.  

In general, there are three major monitoring tasks, 

which have been identified in the literature. These are 

monitoring tool breakage, tool wear and tool vibrations. 

 

The majority of the research work conducted so far 

follows the same framework shown in Fig. 1. It usually 

consists of three major steps: acquisition of signals, 

processing signals and decision-making. The issues 

dealing with the understanding of CTCI systems can be 

classified according to the development of accurate and 

reliable on-line measurement of machining conditions, the 

selection of appropriate preprocessing techniques and 

analysis strategy and the development of improved signals 

classification procedures. 

 

Figure. 1.  Diagram of the set-up for CTCI 

The main measurements that have been identified as 

important indicators for monitoring machining processes 

[3]-[4] include cutting forces, cutting torque, vibrations, 

acoustic emissions, temperature and motor current. Others 

direct measuring methods such as touch trigger probes, 

proximity sensors, optical, radioactive and electrical 

resistance measurement techniques have also been 

reported but their reliability under real conditions is 

limited. The analysis of data from these measurements has 

demonstrated the difficulties involved in extracting 

representative characteristics of all process conditions 

from only one source of information. Data from several 

sensors simultaneously for machining process monitoring 

and control is needed. This analysis also shows that two 

main requirements need to be satisfied when 

implementing an on-line tool condition identification 

system: (i) the measurements must reflect the process 

behavior under its varied operating conditions and (ii) the 

generated data must allow some discrimination between 

specific states of the process. Alternatively, integrating 

several sensors has greatly improved the quality of the 

process representation [5]. The approach remains however 

dependent on the used preprocessing, modeling and 

classification methods. 

The preprocessing strategy is related to extraction of 

monitoring indices (MI). Typical MI include principally: 
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time-domain, time-frequency domain, higher order 

spectrum and wavelet indices. For CTCI, one of the 

best-known approaches consists in monitoring amplitude 

increases or variations in the signals. However, such 

techniques are problematic since variations are strongly 

contaminated by noise and quickly become difficult to 

interpret. The introduction of some new preprocessing 

techniques such as spectral analysis method, has improved 

the efficiency of the detection, particularly for tool wear 

and tool breakage [6]-[7]. These techniques have a good 

resolution in the frequency domain but a very limited 

resolution in the time domain. Moreover, some signal 

detail may be lost in the spectral analysis process. The 

requirement of CTCI for metal cutting applications in 

terms of accuracy, resolution and timeliness requires more 

powerful and efficient approaches. 

The classification process consists of using MI to 

recognize the current tool condition (TC) based on 

pre-defined conditions. The classification can be 

implemented using weighting methods such as pattern 

recognition and ANN or decomposition methods, such as 

decision trees and knowledge-based systems. For specific 

failure mode detection, the majority of research efforts are 

concentrated on acoustic emission and cutting forces. 

These techniques are sensitive to tool failures but require 

extensive calibration. Recently, attempts have been made 

to use sensor fusion to generate the required signature 

features using information from multiple sensors [8]. 

Sensor fusion techniques enhance the richness of the 

underlying information contained in each sensor signal 

[9]-[10] and increase the accuracy and the reliability of the 

CTCI process when deficient sensitivity in one signal 

could be compensated by others signals. The sensitivity of 

TC potentially increases with the number of fused sensors. 

The major advantage of sensor fusion are its enriched 

information for MI extraction and decision-making 

strategy, and its aptitude to take into account the 

information changes due to calibration, drift, or failure. 

Other efforts have been made in the development of signal 

classification procedures for automatic identification of 

several defect classes [11] and in the use of artificial 

intelligence techniques, which are rather attractive since 

they offer the ability to deal with the substantial degree of 

uncertainty, which is characteristic of machining [12]. 

Results obtained indicate an interesting reliability for 

detecting tool failure under fixed conditions. For 

automatic CTCI applications, however, these 

classification methods must be more consistent for 

variable cutting parameters and conditions. 

This paper proposes an improved approach for on-line 

TC identification in metal cutting processes. The 

considered TC include normal cutting air cutting, transient 

cutting, change in cutting parameters, tool breakage, 

vibrations, moderate and severe wear. The approach is 

structured around an ANN based sensor fusion strategy. A 

variety of sensing techniques are combined with five 

preprocessing procedures to select appropriate MI. Forces, 

vibrations, acoustic emissions and motor current sensors 

are used in this study to generate a set of signatures, which 

characterize various TC. A total of nine MI are selected to 

describe the signature characteristics of three different 

classes of TC. Several models are developed using a 

systematic optimization procedure in order to achieve the 

relationship between TC and MI. A classification scheme 

is then developed and tested under various cutting 

conditions. 

 
 

The suggested approach follows basically the steps 

described previously. Signals are acquired from various 

sensors, preprocessed and then processed in the time 

domain by several models to detect and identify various 

process and tool conditions. As illustrated in Fig.2, during 

each control step, signals obtained from «p» sensors are 

preprocessed and used to extract «q» signatures 

representing «r» MI formed by the most recent successive 

«s» samples. Then, the «r» MI are forwarded into a model 

that generate the classification code identifying the «t» 

cutting TC. 

 

Figure. 2.  The identification approach - Stationary time-domain pattern 
classification 

The sensor fusion strategy proposed in this paper is 

basically an indirect method using a combination of 

sensors as input into a mathematical model to extract 

corroborating and relevant information on the machining 

process conditions. The difficulty to implement such 

strategy lies in the selection of appropriate sensors, 

preprocessing schemes and modeling procedures. These 

choices represent the basic ingredients of any sensor 

fusion technique. No established systematic method for 

sensor fusion can be found in the machining literature. 

However, it is reasonable to assume that the fusion 

procedure is carried out through a series of steps in which 

decisions are made based on specific statistical tests. 

Typically, sensors are chosen based on existing 

knowledge of the process parameters and conditions. For 

the preprocessing, five different signal preprocessing 

procedures (PP) have been attempted. These procedures 

can be classified as follows: 
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II. THE PROPOSED TOOL CONDITION IDENTIFICATION 

APPROACH

 PP1-Unprocessed signals: the model inputs 

correspond to the pattern made of the most recent 

successive no preprocessed «s» signal samples.

 PP2 - Normalized signals: the model inputs patterns 

consist of the most recent preprocessed «s» signal 

samples. 



  

 

 

 

 

 
For modeling, two categories of models can be used: 

theoretical and empirical. Theoretical models are often 

difficult to develop because of the limited understanding 

of fundamental behavior of machining processes. The 

most current theoretical models are limited to very few 

measurable variables. Empirical modeling use 

experimental data to adapt the parameters of the model in 

order to compensate for the inability to adequately 

describe the process mechanisms.  

As suggested in various works, easily available data on 

machining can be used to establish models using 

multivariate modeling techniques. However, the material 

variations and the random nature of the cutting process 

require an information system capable of handling this 

profusion of signals satisfactorily. Conventional 

techniques have shown limited success. This is partially 

attributed to the wide range of signal noise and 

misunderstood variations in the process conditions. 

Consequently, modeling techniques with adaptive 

capability could reduce the apparent error in the sensor 

signal. In these conditions, ANN presents one of the best 

modeling options. As compared to other modeling 

techniques, ANN provides an effective modeling 

capability, particularly when the relationships between 

sensors based information and the characteristic to be 

identified are non-linear. ANN can handle strong 

non-linearities, large number of parameters, missing 

information and successfully deal with the abundant data 

generated in machining process. Based on their inherent 

learning capabilities, ANN can be used in a case where 

there is no exact knowledge about the relations between 

various inputs/outputs variables. This is very useful to 

reduce the experiment efforts. Many ANN paradigms have 

been developed to achieve different learning and 

processing speed capabilities. While various ANN 

techniques can be used in this approach, multiplayer 

feedforward network seems to be one of the most 

appropriate because of its simplicity and flexibility. 

Selecting the modeling technique and the model form is 

not sufficient to produce the best CTCI model. Several 

parameters that greatly influence the models quality 

remain to be defined. The selection of the number and the 

type of variables to include in the model and the modeling 

conditions are crucial. Model building analysis is often 

conducted with a large set of potential variables. From 

these variables, only a specific subset is useful. Thus, the 

identification of important variables is decisive to the 

modeling success. The selection of variables can be 

carried out efficiently only if statistical tools are applied 

systematically. Five existing methods have been widely 

used as variables selection procedures: engineering 

judgment, correlation analysis, forward selection, 

backward elimination and step-wise regression [13]. 

However, none of them can find the optimal models 

consistently. Although these methods offer the possibility 

of isolating one reduced model, they are unable to identify 

alternative candidate subsets of the same size or a model 

considered to be optimal according to various criteria. 

Hence, these procedures could lead to poor results.  

In order to extract at low cost the best combination of 

variables, an efficient experimental design method is used. 

Using Taguchi's orthogonal arrays (OA), the CTCI system 

can be designed by considering the most sensitive group of 

MI, which shows high dependency on the monitored TC. 

Taguchi's OA are highly fractional orthogonal designs, 

which can significantly reduce the number of 

combinations to be tested where many parameters and 

potential combinations are involved [13]. The selection of 

the best CTCI model is based on the analysis of the effect 

of each MI combination on the model performances as 

well as the MI contribution to decrease modeling and 

identification errors. The following steps can summarize 

the proposed sensor fusion strategy: (i) Collect data to 

train and verify the models; (ii) Select the modeling 

technique and models performance criteria; (iii) Select the 

appropriate OA to design the required models (rows of the 

matrix are the models and columns represent which 

variables are to be included in each model); (iv) For each 

of the five preprocessing procedures, train the generated 

models and evaluate their performances according to the 

established criteria; (v) Determine the effects of each 

variable and evaluate its contribution in each performance 

index, and finally, (vi) Determine the appropriate model 

configuration. 

 
 

A. Experimental Planning 

Implementing a CTCI approach implies preliminary 

ANN training. Typical MI for training and validation are 

extracted from signals recorded during turning operation 

under various cutting conditions. A successful CTCI must 

be sensitive to changes in TC and insensitive to cutting 

parameters variations. Hence, a total of 108 machining 

tests are conducted under various cutting conditions. 

Thereafter, the acquired signals are used to extract the MI 

and to build the signature patterns representing normal 

operating conditions as well as failure conditions. In this 

study, emphasis has been placed on the coherent choice of 

MI rather than using other methods such as curve fitting 

and correlation analysis. A systematic examination of 

sensor signals monitored under various cutting parameters 

as well as a review of pertinent literature provided the 

basis of the choice of the MI. The selected indices are: 

cutting forces (Fx, Fy, Fz); average resultant cutting force 

Journal of Industrial and Intelligent Information Vol. 2, No. 2, June 2014

2014 Engineering and Technology Publishing 93

III. IMPLEMENTATION OF THE TOOL CONDITION 

IDENTIFICATION APPROACH 

 PP3 - First derivative signals: the model inputs 

correspond to the pattern made of the most recent 

successive first derivative «s» signal samples. 

 PP4 - Wavelet transform signals: the model inputs 

patterns consist of the discrete wavelet transform of 

the most recent «s» signal samples [6]. 

 PP5 - Ratio of the average variances of the dynamic 

signals: the model inputs correspond to the 

resulting pattern made of the most recent «s» signal 

samples [7]. 



  

(Fr); electric spindle motor current (sMc); vibrations (Vx, 

Vy, Vz); acoustic emission (AE). These indices represent 

the most important features of cutting tool conditions in 

time domain. 

B. Experimental Conditions 

Experimentation and data collection was carried out 

using the following apparatus: Single point turning was 

achieved on a Mori Seiki 34 KVA turning center using a 

CNM P32 Kennametal carbide insert to machine 

cylindrical parts made of 6Al-4V titanium alloy. The 

carbide inserts are installed on a holder on which vibration 

and AE sensors are mounted. This tool holder is firmly 

fixed to a Kistler dynamometric table located on the turret. 

Because carbide insert wear and breakage takes a large 

time under normal conditions, tests are carried out in three 

phases as indicated in Table I.  

   

Cutting tests 
Feed 

(mm/rev) 
Speed 
(m/min) 

Edge weakening 

Normal cutting 

conditions 

0.1 
 
0.5 

100 
 

300 
Non-weakened edge 

Cutting with moderate 

and severe wear 
conditions 

0.1 
 
0.5 

100 
 

300 
Non-weakened edge 

Cutting with tool 

breakage conditions 

0.1 
 
 
 

0.5 

100 
 
 
 

300 

Position    Depth 

3.0 0  2.00 

3.0 0  2.25 

3.0 0  2.50 

4.0 0  2.00 

4.0 0  2.25 

4.0 0  2.50 

 

The first phase covers normal operations using variable 

cutting conditions. This phase has produced normal 

cutting, air cutting and transient cutting patterns.  The 

second phase covers moderate and severe wear conditions. 

The choice of tool wear levels was based on finishing 

criteria where the cutter would be replaced before the 

beginning of accelerated wear. Moderate and severe wear 

was defined as corresponding to 15 - 20 and 30 - 35 

minutes of cutting time respectively. The third phase 

covers operations during which tool breakages are caused 

deliberately. In order to accelerate tool deterioration, the 

depth of cut was progressively increased and the cutting 

inserts were weakened with a small notch. The notch on 

each insert was produced on the tool rake surface by a 

diamond coated thin cut-off wheel. These machining tests 

have been carried out with depths of cut ranging between 0 

and 5 mm. During the experiments the signals are 

simultaneously monitored, conditioned and preprocessed 

before extracting the MI from the acquired dynamic 

signals.  

C. Modeling Investigation 

The methodology used to design the CTCI model can be 

summarized by the four following tasks: (i) design and 

train a sufficient number of models, each one is developed 

in order to preserve the OA orthogonality, (ii) estimate the 

performance for each model; (iii) evaluate the effects of 

each MI on the models performances and finally, (iv) 

establish the optimal model. For this purpose, nine MI are 

combined to design the OA. The dimension of the problem 

suggests that 12 models are required to investigate 

efficiently the MI contributions to the CTCI performance. 

Many statistical criteria can be used to assess whether a 

model adequately represents the relationship between TC 

and MI. The performance of fitted models evaluation is 

based on the principle of reducing several statistical 

criteria such as the residual sum of squared error (SSE), 

the residual mean square error (MSE), the total squared 

error (TSE), Mallows Cp statistics, and the coefficient of 

determination (R
2
). In the majority of modeling techniques, 

a model is determined by minimizing SSE. MSE, Cp and 

R
2
 are linear functions of SSE. Under a fixed number of 

variables, a set of variables minimizing the SSE led to 

MSE and Cp as the minimum, and R
2
 as the maximum 

under a fixed number of variables. Among these criteria, 

R
2
 does not have an extreme value and presents a regular 

increasing trend with the number of variables in the model. 

Consequently, the use of R
2
 as a criterion in the variables 

selection procedure can permit subjective interpretations. 

If p among q independent variables are selected to form a 

model, the residual mean square is MSEp = SSEp / n-p-1, 

where n is the total number of observations. The terms 

SSEp and n-p both reduce with an increase in the 

independent variables number p. Therefore, MSEp has the 

ability of showing an extreme value. In this study, the used 

judgment function consists to minimize the training 

(MSEt), the validation (MSEv) and the total (MSEtot) 

Before training the designed ANN models, it was 

important to establish the size of the hidden layer and 

optimize the training performances. The idea is to 

approximate the relationship between the size of the 

hidden layer and the complexity of the MI related to 

various TC. For this evaluation, 4 network topologies were 

studied. For all trained models, an adequate knowledge 

representation with an average error of less than 1% was 

used. Consequently, to avoid long training and overfitting, 

the [(i)x(2i+1)x(o)] structure was selected where i and o 

are the number of inputs and outputs respectively. In order 

to test the validity of the proposed sensor fusion approach, 

the three validation procedures summarized in Table II are 

adopted. 

   

Procedures Training Validation 

VP1 100% of data 100% of data 

VP2 50% of data picked randomly Remaining data (50%) 
VP3 Data acquired under specific 

conditions 

Remaining data 

D. Modeling Analysis 

Two statistical indices, derived from ANOVA, are used 

to analyze the models performances. The % contributions 

and the average effects of variables included in each model. 

The % contribution of a variable reflects the portion of the 

total variation observed in the models attributed to this 

variable. The graph of average effects is an interesting way 
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TABLE I. EXPERIMENTAL CONDITIONS

TABLE II. VALIDATION PROCEDURE 



  

to analyze the effects the variables on the models 

performances. As the modeling procedure is designed 

using an OA, the estimates of the average effects will not 

be influenced. Both statistical indices are applied to all 

modeling performance criteria according to the three 

validation procedures. 

The modeling procedure for the selection of variables 

begins by choosing an OA that allows the design of 

models where all potential variables are included. As 

illustrated in table 3, the OA that best fits this problem is a 

L12 with a total of 12 models to be designed where + and - 

indicate respectively whether the MI is used as input to the 

model or not. Model deviation estimates are evaluated as a 

function of three main criteria (MSEt, MSEv and MSEtot) 

for each preprocessing procedure. These criteria represent 

the average MSE values estimated from the three 

validation procedures. 

TABLE III.  MODELS EVALUATION USING VARIOUS MSE VALUES 

Models Fx Fy Fz Fr sMc Vx Vy Vz AE 

M1 1 1 1 1 1 1 1 1 1 
M2 1 1 1 1 1 0 0 0 0 

M3 1 1 0 0 0 1 1 1 0 

M4 1 0 1 0 0 1 0 0 1 
M5 1 0 0 1 0 0 1 0 1 

M6 1 0 0 0 1 0 0 1 0 

M7 0 1 0 0 1 1 0 0 1 
M8 0 1 0 1 0 0 0 1 1 

M9 0 1 1 0 0 0 1 0 0 

M10 0 0 0 1 1 1 1 0 0 
M11 0 0 1 0 1 0 1 1 1 

M12 0 0 1 1 0 1 0 1 0 

 

 

 

The modeling design reveals that all models fitted the 

data relatively well for the five preprocessing procedures. 

For the sake of comparison, all the MSE values were 

calculated using normalized data. The results demonstrate 

that the proposed approach works well in identifying 

normal cutting, air cutting, transient cutting, tool breakage 

and changes of cutting parameters but performs rather 

poorly for moderate and severe wear. A careful 

examination indicates that this is because a number of 

moderate tool wear samples were misclassified to normal 

cutting and severe tool wear samples were misclassified to 

tool breakage. Using these results, the average effect of 

each MI on the models performance was calculated. 

Average effects graph in Fig. 3 shows that the average 

total residual mean square errors MSEtot related to the five 

preprocessing procedures are affected at different degrees 

by the considered MI. In this graph, the horizontal axis 

indicates the variable levels. The plotted points correspond 

to the averages of observations realized under each 

variable level. This graph reveals that the MI 

predominantly affecting the models performances are Fz, 

sMc, Vz and AE. Similar conclusion can be clearly 

established from the % contributions reported in Table IV. 

On the other hand, if we consider MSEtot as the main 

criteria, the first derivative preprocessing procedure 

presents the best modeling performance.  

   

  

 Criteria 
Monitoring indices 

Fx Fy Fz Fr sMc Vx Vy Vz AE Error 

PP1 

MSEt 4.2 6.2 20.2 - 26.1 - - 20.1 10.5 12,7 

MSEv 10.6 2.3 14.7 1.5 25.6 3.1 4.1 23.3 - 14,7 
MSEtot 5.3 7.0 18.1 - 25.7 2.1 2.4 22.1 3.6 13,7 

PP2 

MSEt 7.1 1.4 22.8 - 27.0 - - 21.5 12.7 7,5 

MSEv 3.1 - 19.9 7.8 11.2 4.9 2.3 18.9 17.9 14,0 
MSEtot 4.5 1.1 20.2 4.1 21.1 2.9 - 19.3 15.2 11,6 

PP3 

MSEt 5.4 - 25.6 1.9 25.9 - - 23.8 11.2 6,2 

MSEv 1.7 2.7 22.1 - 19.9 3.5 2.8 18.6 17.9 10,8 

MSEtot 3.9 - 23.8 0.9 23.5 5.0 - 19.3 14.9 8,8 

PP4 

MSEt - 8.2 11.5 - 6.1 7.9 5.6 11.4 32.9 16,4 

MSEv 3.1 11.2 12.1 1.4 8.9 12.2 9.5 4.5 22.9 14,3 

MSEtot 1.4 9.1 11.9 1.1 7.7 8.5 8.9 8.8 26.8 15,8 

PP5 
MSEt - 4.1 28.5 4.7 26.0 - - 7.2 14.7 14,8 
MSEv 11.5 5.5 12.9 10.3 16.3 3.2 1.1 14.4 7.8 16,9 

MSEtot 9.1 4.5 19.6 6.1 22.3 - - 9.6 12.9 15,8 

       4,84 4.34 18.7 2.45 20.0 3.70 2.27 15.8 14.7 13.12 

 

Assuming a limit of 5% and by considering MSEtot as 

the main criteria, Fz, sMc, Vz and AE are the variables that 

affect directly the models performances. The others MI 

have marginal contributions and sometimes they increase 

the MSE values as reported in Fig. 3 and Table 5. On the 

other hand, the results show that the error contribution 

remains relatively low (less than 20%). This implies that 

no important variable was omitted in the modeling 

procedure. These results make possible the identification 

of five quasi-optimal models (QOM) configurations 

(QOMPP1, QOMPP2, QOMPP3, QOMPP4, and QOMPP5) 

related to the five preprocessing procedures. These QOM 

are achieved by setting each selected MI at a level which 

minimizes the MSE values. Accordingly, the five QOM 

were built and tested.  

   

 

Criteria 
Monitoring indices 

Fx Fy Fz Fr sMc Vx Vy Vz AE 

PP1 5.32 6.98 18.1 - 25.72 - - 22.11 - 

PP2 - - 20.2 - 21.1 - - 19.3 15.2 

PP3 - - 23.8 - 23.5 - - 19.32 14.85 

PP4 - 9.09 11.89 - 7.65 8.5 8.94 8.81 26.8 

PP5 9.13 - 19.6 6.11 22.3 - - 9.64 12.9 

       2.89 4.02 18.72 1.22 20.05 2.13 2.24 15.84 13.95 

 

As shown in Table VI where + and - indicate 

respectively whether the MI is used as input to the model 

or not, the results demonstrate that the four QOM perform 

better than the 60 tested models. However, when 

comparing the five models with each other, there is a clear 

superiority of COMPP3 with MSEt, MSEv and MSEtot as 

minimum. The performances of others models are similar 

with a small advantage for COMPP1 and COMPP2. COMPP4 

and COMPP5 with more variables are slightly less efficient. 

Hence, one can presume that Fz, sMc, Vz and AE are 

ultimately sufficient to achieve a significantly reduced 
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Figure. 3. Average effects of the MI in increasing / decreasing the 
average of the MSEtot values for the five preprocessing procedure 
(Variable levels: (+) → MI included in the models and (-) → not included)

TABLE IV. AVERAGE % CONTRIBUTION OF THE MI IN REDUCING THE 

AVERAGE MSE VALUES

TABLE V. AVERAGE % CONTRIBUTION OF THE MI IN REDUCING THE 

AVERAGE MSETOT VALUES USING A LIMIT OF 5%



  

MSE values and produce the best model. 

  

  

Model COMPP1 COMPP2 COMPP3 COMPP4 COMPP4 

M
o
n
it

o
ri

n
g
 i

n
d
ic

es
 

Fx + - - - + 

Fy + - - + - 

Fz + + + + + 

Fr - - - - + 

sMc + + + + + 

Vx - - - + - 

Vy - - - + - 

Vz + + + + + 

AE - + + + + 

MSE 

values 

MSEt 0.0521 0.0683 0.0443 0.1120 0.0724 

MSEv 0.0858 0.1075 0.0733 0.1563 0.1126 

MSEtot 0.1393 0.1758 0.1076 0.2683 0.1850 

 

Fig. 4 and 5 present Fz, sMc, Vz and AE first derivative 

signals and COMPP3 outputs respectively for training and 

validation phases. The simulation results show that the 

model is able to identify without difficulty the considered 

TC. It can be observed that the model outputs stay below a 

virtual threshold of 20% for normal cutting conditions. 

The figures show some variations in signals and models 

responses due to the resemblance between signals relative 

to moderate wear conditions (between 20 and 50%) and 

variations in cutting parameters and several similarities 

between signals relative to severe wear (between 50 and 

75%) and tool breakage conditions (more than 75%). 

These results demonstrate that the model is excellent and 

presents a good reliability in identifying various tool 

conditions with accuracy better than ±5% for varying 

operating conditions. The results suggest that the first 

derivative preprocessing procedure have decisive effects 

on the model efficiency. 

 

 

 

 

 

Figure. 4. Tool condition identification model response using training 

data 

 

 

 

 

 

Figure. 5. Tool condition identification model response using validation 
data 
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TABLE VI.  QUASI-OPTIMAL MODELS EVALUATION USING VARIOUS 

MSE VALUES



  

IV. CONCLUSION 

This paper has presented a structured and 

comprehensive approach for on-line tool condition 

identification in metal cutting processes using an ANN 

based multi-sensor fusion strategy. Several models are 

developed in order to describe the relationships between 

tool conditions and various monitoring indices. An 

improved modeling procedure is then developed and 

tested under various conditions. Built progressively by 

examining multiple monitoring indices from various 

aspects and making modeling decisions step by step, the 

proposed approach offers the ability to evaluate the effects 

of each modeling parameter on the performance and the 

efficiency of the identification models. Using an example 

applied to turning, the paper demonstrates the possibility 

of establishing a general model able to identify not only 

one specific failure mode but also detect and identify 

several tool conditions and failure modes under various 

process conditions.  
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